
Geometry

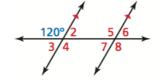
Chapter 3 Parallel and Perpendicular Lines

Name ______ Period ______

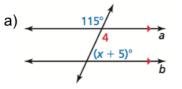
Ch 3.1 - Pairs of Lines and Angles

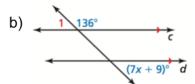
Vocabulary

Parallel Postulate	\xrightarrow{P}
Perpendicular Postulate	₽ ↓ ↓

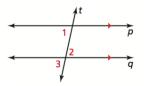

Transversal:		- 1 2 h
Corresponding angles:	Alternate Exterior angles:	5 6
Alternate Interior angles:	Consecutive Interior angles:	7 8 k

Questions:


Ch 3.2 - Parallel Lines and Transversals

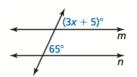

Corresponding Angles Theorem	$\begin{array}{c} 1/2 \\ 3/4 \\ \end{array}$
Alternate Interior Angles Theorem	$\begin{array}{c} 5/6 \\ \hline 7/8 \\ \hline q \\ \end{array}$
Alternate Exterior	
Angles Theorem	

1) Determine all the angles using the postulates and theorems we just learned.


2) Determine the value of x.

Prove the Alternate Interior Angles Theorem

Given	$p \parallel q$
Prove	$\angle 1 \cong \angle 2$

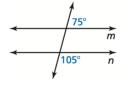

Statement

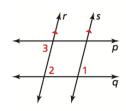
<u>Reason</u>

Ch 3.3 - Proofs with Parallel Lines

Converse of the Corresponding Angles Theorem	1 2 5 6 4 3 8 7
Converse of the Alternate Interior Angles Theorem	$\begin{array}{c} 1 \\ 2 \\ 4 \\ 3 \\ 8 \\ 7 \end{array}$
Converse of the Alternate Exterior	<i>, , ,</i>
Angles Theorem	

1) Compute the value of x that makes m || n.




Determine Whether Lines Are Parallel

Given: $r \parallel s$ and $\angle 1 \cong \angle 3$ Prove: $p \parallel q$

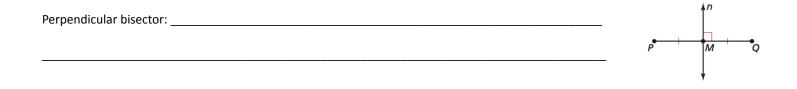
<u>Statement</u>

2) Is there enough evidence to conclude that m || n?

<u>Reason</u>

Transitive Property of	
Parallel Lines Theorem	

Big Ideas Ch 3 Notes

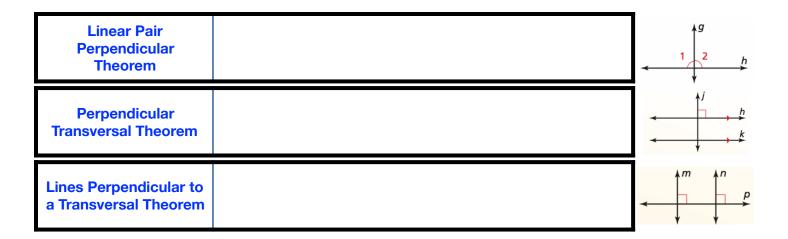

Ch 3.4 - Proofs with Perpendicular Lines

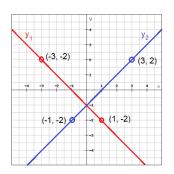
Perpendicular lines: _____

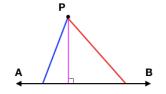
How do you determine if two lines in a coordinate plane are perpendicular?

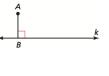
The distance from a point to a line is _____

Solve for the distance of Point A to Line BD.


A(-3, 3)


-4


B(-1,

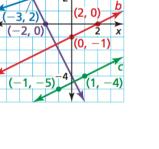

D(2, 0)

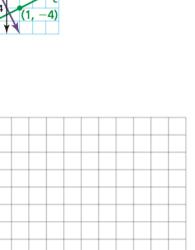
4 x C(1, −1)

Ch 3.5 - Equations of Parallel and Perpendicular Lines

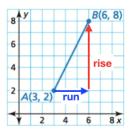
Directed Line Segment: _____

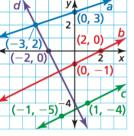
Using the diagram to the right, determine the coordinates of point P along segment AB such that AP to PB is 3 to 2.


Slope of a Line


Parallel lines: _____

Perpendicular lines: _____


Determine which of the lines are parallel and which of the lines are perpendicular.


1. Write an equation of the line passing through the point (-1, 1) that is parallel to the line y = 2x - 3.

x

Big Ideas Ch 3 Notes

2. Write an equation of the line passing through the point (2, 3) that is perpendicular to the line 2x + y = 2.

y					
					x
,					

3. Find the distance from the point (1, 0) to the line y = -x + 3.

	У						
_							
							x
	,						

4. Find the distance from the point (6, 4) to the line y = x + 4.